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• DARPA introduced XAI to make accessible an interpretable the 

internal logic and the outcome of AI models
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• The agent decides per slice Physical Resource Block allocation (PRB) and 

Scheduling Policy (e.g., proportional fair)

• Slices: eMBB, eMTC, URLLC; Agents: high throughput (HT), low latency (LL)

• Users report several KPIs (e.g., buffer status, transmitted bit 

rate/packets, etc..)
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• Unique characteristics of Deep Reinforcement Learning (DRL):

 Learning actions (finite, possibly large, set)

 Inhomogenous data (inputs and outputs are not necessarily the same 

piece of information)

• We asked: "would surrogate self-interpretable models suffice to 

explain a complex agent?"
 For this, we train decision trees onto tabular data (one per slice, one on 

all slices)

• How does this method compare to the case of applying known 

XAI tools directly to the agent? 
 We look for a semantic equivalence between these two types of 

explanations



• We analyze known-techniques when applied to the model

 SHAP 

 Decision trees
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Both apply to the agent, hence do not provide 

feature relevance of the input, but on the outputs 

of the autoencoder 



• SHAP: a game theory-based approach for ranking feature relevance

• Explanations: “low importance prior change of PRB allocation”
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• SHAP is extremely costly from a computational perspective 

when applied to DRL agents

7



• CH#1: Autoencoders break direct input-output connection

 Known techniques like SHAP or LRP only reveal importance of the latent 

representation, not the actual input

• CH#2: If actions depend on either past actions or states of the 

environment like past PRB allocation, the process has memory

 Primary cause and primary effect of an action unclear: can not use 

casual learning models

• CH#3: Actions may be multi-modal, i.e., one decision controls 

several parameters

 Hard to understand the effect of each mode
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• EXPLORA is a framework: ❶ explains DRL agent behavior, ❷ can 

refine action decision based on intents

• We use attributed graphs as data structure for the explanations:

 Nodes are actions and attributes are the monitored effect of the action

We study the transitions to synthesize the explanations
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• The workflow for three time-steps (t0, t1, t2) and 2 users

• [36,3,11] => PRBs per slice (sum to 50)

• [1,2,2] => scheduling policy

Transition: same PRB, different scheduling policy
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• The multi-modal action gives rise to classes of transitions

Same PRB

Self

Distinct

Same scheduling
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• We designed a O-RAN compatible solution: DRL agent and EXPLORA are 

xApps running on the near RealTime Radio Intelligent Controller

• Distribute Units (O-DU) monitor and stream KPIs to the near RT-RIC through 

E2 interface. DRL agent takes actions, sends to the RIC Message Router 

(RMR) who streams to E2 such control enforced at O-DU



• We study the transitions of the attributed graph:

 Comparing the distributions of classes of actions per slice

 Building a decision tree

13

Agent HT, slice eMBB: same 

scheduling reduces throughput



• Specific policies based on intents can improve throughput

 Before taking action a, explore the graph for better alternatives
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P1 looks for actions that in the 

past delivered higher throughput 

than the current one

P2 looks for actions that in the 

past obtained higher reward 

than the current one
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• EXPLORA generates network-aware explanations on agents’ 

behavior

• We show that agents’ decisions could be revisited and improved

programmatically with intents

• We make public our code for reproducibility

https://github.com/wineslab/explora
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Thank You!
<claudio.fiandrino@imdea.org>


