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A Primer on Al Explainability

* DARPA introduced XAl to make accessible an interpretable the
internal logic and the outcome of Al models

Today
| v v > Why did you do that?
Train Al Deploy | | Output > When do you
— > > : succeed/fail?
Data| |Process Model (Action)
» When can | trust you?
» How do | correct errors?
With XAl
l Jy \/ » | understand why
Train XAl Deploy | | Output > | know why you

succeed/fall

Data| |Process Model (Action)

v

| kKnow when to trust

v

| know when you err
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Resource Allocation in Network Slicing
» The agent decides per slice Physical Resource Block allocation (PRB) and
Scheduling Policy (e.g., proportional fair)
 Slices: eMBB, eMTC, URLLC; Agents: high throughput (HT), low latency (LL)

« Users report several KPlIs (e.g., buffer status, transmitted bit
rate/packets, etc..)

(Ix3)
PRBs x Slice
. E: xXApp
Slice eMBB UJ
| R ,
% AEy, AE,, AE, DRL Agent (HT/LL) > Slice eMBB _ll
%< (< 1,1 > x3)
— c <Policy, PRBs> x Slice
Slice eMBB > Autoencoder > Slice eMBB JJ Y .
Multi-modal action:
X i (3x3) e Physical Resource Blocks (PRBs)
oA A ) KPIs x Slice e Scheduling Policy
minstitute (10 X 3 X 3)
=iMdea UEs x KPIs x Slice (eMBB,eMTC,URLLC)
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Explaining Deep Reinforcement Learning Agents

* Unique characteristics of Deep Reinforcement Learning (DRL):
— Learning actions (finite, possibly large, set)

— Inhomogenous data (inputs and outputs are not necessarily the same
piece of information)

* We asked: "would surrogate self-interpretable models suffice to

explain a complex agent?”
— For this, we train decision trees onto tabular data (one per slice, one on
all slices)

* How does this method compare to the case of applying known

XAl tools directly to the agent?
— We look for a semantic equivalence between these two types of
s explanations




Limitations of the State-of-the-Art

* We analyze known-techniques when applied to the model

— SHAP Both apply to the agent, hence do not provide
Decision t feature relevance of the input, but on the outputs
— UECISIon trees of the autoencoder

/

(1x3) %

PRBS x Slice
‘Slice eMBB
| , ,
%3 P AEg, AE,, AE, DRL Agent (HT/LL) > Slice eMBB _u
= (<1,1>x3)
— . — JJ <Policy, PRBs> x Slice
Slice eMBB > Autoencoder > Slice eMBB Multi-modal action:
I (3x3) e Physical Resource Blocks (PRBs)
: - Q(PIS X Shce / e Scheduling Policy
(10 x 3 x 3)

UEs x KPIs x Slice (eMBB,eMTC,URLLC)
(tx_bitrate, tx_packets, DWL_buffer size)
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SHAP: Low Relevance for DRL Inputs (AE;) B

Limitations of the State-of-the-Art: SHAP

« SHAP: a game theory-based approach for ranking feature relevance

« Explanations: “low importance prior change of PRB allocation”

I SHAP: High Relevance for DRL

Inputs (AE))
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(a) eMBB slice

(b) mMTC slice (c) URLLC slice



Limitations of the State-of-the-Art: SHAP (ll)

* SHAP is extremely costly from a computational perspective
when applied to DRL agents
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Configurations Crp irf2—<x> Configurations CHT.LL trf2—x

(a) On different machines (b) On different agents
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The Challenges that We Solve

« CH#1: Autoencoders break direct input-output connection

— Known techniques like SHAP or LRP only reveal importance of the latent
representation, not the actual input

« CH#2: If actions depend on either past actions or states of the
environment like past PRB allocation, the process has memory

— Primary cause and primary effect of an action unclear: can not use
casual learning models

« CH#3: Actions may be multi-modal, i.e., one decision controls
several parameters

— Hard to understand the effect of each mode

netwarks
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Our Approach for Explainability: EXPLORA

- EXPLORA is a framework: @ explains DRL agent behavior, @ can
refine action decision based on intents

» We use attributed graphs as data structure for the explanations:

— Nodes are actions and attributes are the monitored effect of the action

— We study the transitions to synthesize the explanations

Attributed graph: {
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Building the Attributed Graph

» The workflow for three time-steps (t,, t,, t,) and 2 users
* [36,3,11] => PRBs per slice (sum to 50) tx_bitrate /

* [1,2,2] => scheduling policy toes tyes
- SLO [4.20,4.21] (421421
tx_bitrate SL1 [0.06,0.04] [0.03, 0.03]
SL2 [0.08,0.14] [0.7,0.11]
hi+s tx_packets
SLO  [4.15, 4.13]
tx_packets SL1 [0.05, 0.04] to4s to+s
SL2 [0.10, 0.15] " o SLo [112,89] [89, 89]
fies "o ([36.3.11], 1_? 2 ) > SL1 [25,7]  [6,6]
SLO [225, 234] \ / SL2 [15,26]  [14,20]
SL1 [9, 8]
SL2 [19, 27] \—\.\? ( 36 3 11 2 0 1 tl ~ t2 DWL_buF’Fer_size
DWL_buffer_ 5127 i tors  tors
+ -
Node ‘ SLo [0,0] [0,0]
tHas Attribute —> SL1 [0,0] [0,0]
SLO  [469, 469] SLz2  [0.0] [0,0]
SL1 [0, 0] ’ ’
SL2 [0, 0]
%tlmgsea Transition: same PRB, different scheduling policy




An Example of a Graph

* The multi-modal action gives rise to classes of transitions

Self

Same PRB \l{

\ 0
\h ([36311] [122]) —

u[?:ﬁ 3, 11] [0 2, 1])__"",; - ([36 3, 11] [z 0, 1]) f{, ([36 3,11], [2, 2, 0])

& ([36 3, 11] [0 1 O]L/

C([36,3,11], [2,2,2]) O

< (136,9,5,[1,2,2])

—— e

[ Same scheduling_]
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Implementing EXPLORA

* We designed a O-RAN compatible solution: DRL agent and EXPLORA are
XApps running on the near RealTime Radio Intelligent Controller

 Distribute Units (O-DU) monitor and stream KPIs to the near RT-RIC through
E2 interface. DRL agent takes actions, sends to the RIC Message Router
(RMR) who streams to E2 such control enforced at O-DU

Y XApps
= [ DREAgent Nl — > -] — | ———--== , -
= ! o | gNB
< A o o E2 | | KPIs
< ol a E o _5 ’ O-CU | -———
- 2 = —_—
: -|& (EXPLORA| ~ aja é | F1 Control
3 "
% Y v a/a § <} -- -)-rO_-IE |
> Data access |€======-==- o E2 | |
7 | ’ O-FH eMBB
(re)
E : 7 j i O-RU %‘D mMTC
ata repositor near-RT RIC |
i ; X [] urLLC
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Understanding Agents

* We study the transitions of the attributed graph:

— Comparing the distributions of classes of actions per slice

R . o o tx_packets < —51.855
— Building a decision tree g - 0367

samples = 21
class = Distinct

— x Same-PRB M Same-Pol. * Distinct ¢ Self True ~ . False
_8 4000 ¥k 7 tx_bitrate < —1.035 tx_packets < 56.76
> e gini = 0.375 gini = 0.381
an) 2000 Augmeﬂt samples = 4 samples = 17
\'_:d/ 0 class = Same-PRB class = Distinct
X
5 o / N PR
&= —2000 Diminish ’ gini = 0.0 gini = 0.375 tx_bitrate < —0.005 gini = 0.0
B e samples = 1 samples = 3 gini = 0.305 samples = 1
K -4 000 " class = Same-Sched. class = Same-PRB samples = 16 class = Same-Sched.
B class = Distinct
= 2 -1 0 1 2 > -
Tx bitrate (Mbps) gini = 0.0 tx_bitrate < 0.005
samples = 8 gini = 0.469
class = Distinct samples = 8
Agent HT, slice eMBB: same —
Vo . mmm Same-PRB
PP scheduling reduces throughput e Same.Sched. gini - 0. gini - 0.0
[imsﬁltﬂ ea mmm Distinct samples = 3 samples = 5
nétworks Self class = Self class = Distinct
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Intent-based Action Steering

* Specific policies based on intents can improve throughput

— Before taking action a, explore the graph for better alternatives

-
—— P1--- P2 ——No changes P1 looks for actions that in the

1.0 |
0.8
L1, ]
= 0.6 i
O 04 |
0.2

0.0 |

Better —>

past delivered higher throughput

/J lj \than the current one
]
f.:ﬂ

Y,
4 . .
P2 looks for actions that in the
past obtained higher reward
\than the current one ,

|
4.5

Tx bitrate (Mbps)




Take-Home Messages

« EXPLORA generates network-aware explanations on agents’
behavior

* We show that agents’ decisions could be revisited and improved
programmatically with intents

« We make public our code for reproducibility @

@5 dE

e https://github.com/wineslab/explora

TS




Thank You!

<claudio.fiandrino@imdea.org>
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